

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Database Programming with SQL
9-2
Using Rollup and Cube Operations, and Grouping Sets

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

Objectives

This lesson covers the following objectives:
• Use ROLLUP to produce subtotal values

• Use CUBE to produce cross-tabulation values
• Use GROUPING SETS to produce a single result set

• Use the GROUPING function to identify the extra row values
created by either a ROLLUP or CUBE operation

3

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

Purpose

• Let's develop the problem that you were presented with in
the last lesson just a little further.

• To find the average height of all students, you use this query:

• If you want to know the average height of the students based
on their years in school, you could write a number of
different SQL statements like this:

SELECT AVG(height) FROM students;

SELECT AVG(height) FROM students WHERE year_in_school = 10;

SELECT AVG(height) FROM students WHERE year_in_school = 11;

SELECT AVG(height) FROM students WHERE year_in_school = 12;

4

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

Purpose

• Or you could simplify the problem by writing just one
statement containing the GROUP BY and HAVING clauses.

• What if, once you have selected your groups and computed
your aggregates across these groups, you also wanted
subtotals per group and a grand total of all the rows selected.

5

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

Purpose

• You could import the results into a spreadsheet application,
get out your calculator, or compute the totals manually on
paper using arithmetic.

• But better still, you could use some of the extensions to the
GROUP BY clause specifically created for this purpose:
ROLLUP, CUBE, and GROUPING SETS.

• Using these extensions requires less work on your part and
they are all highly efficient to use, from the point of view of
the database.

6

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

ROLLUP

• In GROUP BY queries, you are quite often required to produce
subtotals and totals, and the ROLLUP operation can do that
for you.

• Without using the ROLLUP operator, that kind of requirement
would mean writing several queries and then entering the
results in, for instance, a spreadsheet to calculate and format
the results.

• ROLLUP creates subtotals that roll up from the most detailed
level to a grand total, using the grouping list specified in the
GROUP BY clause.

7

Presenter
Presentation Notes
It is quite normal that managers want not just the sum of salaries for a job role per department, but they probably also want the total per department and the total for all departments.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

ROLLUP

• The action of ROLLUP is straightforward: it creates subtotals
that roll up from the most detailed level to a grand total

• ROLLUP uses an ordered list of grouping columns in its
argument list.

• First, it calculates the standard aggregate values specified in
the GROUP BY clause.

• Next, it creates progressively higher-level subtotals, moving
from right to left through the list of grouping columns.

• Finally, it creates a grand total.

8

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

ROLLUP Result Table

• In the result table below, the rows highlighted in red are
generated by the ROLLUP operation:
SELECT department_id, job_id, SUM(salary)
FROM employees
WHERE department_id < 50
GROUP BY ROLLUP (department_id, job_id);

DEPARTMENT_ID JOB_ID SUM(SALARY)
10 AD_ASST 4400
10 - 4400
20 MK_MAN 13000
20 MK_REP 6000
20 - 19000
- - 23400

Subtotal for dept_id 10

Subtotal for dept_id 20

Grand Total for report

9

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

ROLLUP Result Formula

• The number of columns or expressions that appear in the
ROLLUP argument list determines the number of groupings.

• The formula is (number of columns) + 1 where number of
columns is the number of columns listed in the ROLLUP
argument list.

10

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

ROLLUP Result Formula

• In the example query below, two columns are listed in the
ROLLUP argument list and, therefore, you will see three
values generated automatically.
SELECT department_id, job_id, SUM(salary)
FROM employees
WHERE department_id < 50
GROUP BY ROLLUP (department_id, job_id);

11

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

Without ROLLUP

• If you use GROUP BY without ROLLUP for the same query,
what would the results look like?

• You would have to execute multiple queries to get the
subtotals produced by ROLLUP.

SELECT department_id, job_id, SUM(salary)
FROM employees
WHERE department_id < 50
GROUP BY (department_id, job_id);

DEPARTMENT_ID JOB_ID SUM(SALARY)
20 MK_MAN 13000
10 AD_ASST 4400
20 MK_REP 6000

12

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

CUBE

• CUBE, like ROLLUP, is an extension to the GROUP BY clause.
• It produces cross-tabulation reports.

• It can be applied to all aggregate functions including AVG,
SUM, MIN, MAX, and COUNT.

• Columns listed in the GROUP BY clause are cross-referenced
to create a superset of groups.

• The aggregate functions specified in the SELECT list are
applied to this group to create summary values for the
additional super-aggregate rows.

13

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

CUBE

• Every possible combination of rows is aggregated by CUBE.
• If you have n columns in the GROUP BY clause, there will be

2n possible super-aggregate combinations.
• Mathematically these combinations form an n-dimensional

cube, which is how the operator got its name.

14

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

CUBE

• CUBE is often used in queries that use columns from separate
tables rather than separate columns from a single table.

• Imagine, for example, a user querying the Sales table for a
company like AMAZON.COM.

• A commonly requested cross-tabulation report might include
subtotals for all possible combinations of sales across a
Month, Region, and Product.

15

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

CUBE

• In the following statement, the rows in red are generated by
the CUBE operation:
SELECT department_id, job_id, SUM(salary)
FROM employees
WHERE department_id < 50
GROUP BY CUBE (department_id, job_id); DEPARTMENT_ID JOB_ID SUM(SALARY)

- - 23400

- MK_MAN 13000

- MK_REP 6000

- AD_ASST 4400

10 - 4400

10 AD_ASST 4400

20 - 19000

20 MK_MAN 13000

20 MK_REP 6000

Total for report
Subtotal for MK_MAN
Subtotal for MK_REP
Subtotal for AD_ASST
Subtotal for dept 10

Subtotal for dept 20

16

Presenter
Presentation Notes
The earlier example of ROLLUP generated subtotals for each department and a Total for the report. CUBE gives that information, but adds subtotals for each job across all departments.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

GROUPING SETS

• GROUPING SETS is another extension to the GROUP BY
clause.

• It is used to specify multiple groupings of data.
• It gives you the functionality of having multiple GROUP BY

clauses in the same SELECT statement, which is not allowed in
the normal syntax.

17

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

GROUPING SETS

• If you want to see data from the EMPLOYEES table grouped
by (department_id, job_id, manager_id).

• But also grouped by (department_id, manager_id).
• And also grouped by (job_id, manager_id), then you would

normally have to write three different select statements with
the only difference between them being the GROUP BY
clauses.

18

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

GROUPING SETS

• For the database, this means retrieving the same data three
different times, and that can be quite a big overhead.

• Imagine if your company had 3,000,000 employees.
• Then you are asking the database to retrieve 9 million rows

instead of just 3 million rows – quite a big difference.

• So GROUPING SETS are much more efficient when writing
complex reports.

19

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

GROUPING SETS

• In the following statement, the rows highlighted in color are
generated by the GROUPING SETS operation:

SELECT department_id, job_id, manager_id, SUM(salary)
FROM employees
WHERE department_id < 50
GROUP BY GROUPING SETS
((job_id, manager_id), (department_id, job_id), (department_id, manager_id));

DEPARTMENT_ID JOB_ID MANAGER_ID SUM(SALARY)

- MK_MAN 100 13000

- MK_MAN 201 6000

- AD_ASST 101 4400

10 AD_ASST - 4400

20 MK_MAN - 13000

20 MK_REP - 6000

10 - 101 19000

20 - 100 13000

20 - 201 6000

20

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

GROUPING Functions

• When you use ROLLUP or CUBE to create reports with
subtotals, you quite often also have to be able to tell which
rows in the output are
actual rows returned
from the database and
which rows are computed
subtotal rows resulting
from the ROLLUP or CUBE
operations.

DEPARTMENT_ID JOB_ID SUM(SALARY)
- - 23400
- MK_MAN 13000
- MK_REP 6000
- AD_ASST 4400
10 - 4400
10 AD_ASST 4400
20 - 19000
20 MK_MAN 13000
20 MK_REP 6000

21

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

GROUPING Functions

• If you look at the report on the right, how will you be able to
differentiate between the actual database rows and the
calculated rows?

• How can you tell the
difference between a
stored NULL value
returned by the query
and NULL values created
by a ROLLUP or CUBE.

DEPARTMENT_ID JOB_ID SUM(SALARY)
- - 23400
- MK_MAN 13000
- MK_REP 6000
- AD_ASST 4400
10 - 4400
10 AD_ASST 4400
20 - 19000
20 MK_MAN 13000
20 MK_REP 6000

22

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

GROUPING Functions

• The GROUPING function handles these problems.
• Using a single column from the query as its argument, the

GROUPING function will return a 1 for an aggregated
(computed) row and a 0 for a non-aggregated (returned) row.

• The syntax for the GROUPING is simply GROUPING
(column_name).

• It is used only in the SELECT clause and it takes only a single
column expression as the argument.

23

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

• Example:

GROUPING Functions

SELECT department_id, job_id, SUM(salary),
GROUPING(department_id) AS "Dept sub total",
GROUPING(job_id) AS "Job sub total"

FROM employees
WHERE department_id < 50
GROUP BY CUBE (department_id, job_id);

DEPARTMENT_ID JOB_ID SUM(SALARY) Dept sub total Job sub total
- - 23400 1 1
- MK_MAN 13000 1 0
- MK_REP 6000 1 0
- AD_ASST 4400 1 0
10 - 4400 0 1
10 AD_ASST 4400 0 0
20 - 19000 0 1
20 MK_MAN 13000 0 0
20 MK_REP 6000 0 0

24

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

Terminology

Key terms used in this lesson included:
• CUBE

• GROUPING FUNCTION
• GROUPING SETS

• ROLLUP

25

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.
DPS9L2
Using Rollup and Cube Operations, and
Grouping Sets

Summary

In this lesson, you should have learned how to:
• Use ROLLUP to produce subtotal values

• Use CUBE to produce cross-tabulation values
• Use GROUPING SETS to produce a single result set

• Use the GROUPING function to identify the extra row values
created by either a ROLLUP or CUBE operation

26

	Slide Number 1
	Database Programming with SQL
	Objectives
	Purpose
	Purpose
	Purpose
	ROLLUP
	ROLLUP
	ROLLUP Result Table
	ROLLUP Result Formula
	ROLLUP Result Formula
	Without ROLLUP
	CUBE
	CUBE
	CUBE
	CUBE
	GROUPING SETS
	GROUPING SETS
	GROUPING SETS
	GROUPING SETS
	GROUPING Functions
	GROUPING Functions
	GROUPING Functions
	GROUPING Functions
	Terminology
	Summary
	Slide Number 27

